Properties | More Info | Isotopes | Spectra
Compounds | Reactions | Production
Atomic: M.A.C. | Reference
Images | Video
Occurrence and Production of Rhodium
Mining
The industrial extraction of rhodium is complex as the metal occurs in ores mixed with other metals such as palladium, silver, platinum, and gold. It is found in platinum ores and obtained free as a white inert metal which it is very difficult to fuse. Principal sources of this element are located in South Africa, in river sands of the Ural Mountains, in North and South America and also in the copper-nickel sulfide mining area of the Sudbury, Ontario region. Although the quantity at Sudbury is very small, the large amount of nickel ore processed makes rhodium recovery cost effective. The main exporter of rhodium is South Africa (80%+) followed by Russia. The annual world production of this element is only about 20 tons and there are very few rhodium minerals. It is generally difficult to determine if a rock sample contains platinum group elements. As of 2006, rhodium cost approximately six times as much as gold, by weight. Rhodium typical historical price is about about $1,000/troy oz. but in recent years it increased to about $6,000/oz.
From used nuclear fuels
It is also possible to extract rhodium from used nuclear fuel, which contains rhodium (1 kg of the fission products of 235U contain 13.3 grams of 103Rh. So as a typical used fuel is 3% fission products by weight it will contain about 400 grams of rhodium per ton of used fuel. The longest lived radioisotope of rhodium is 102mRh which has a half life of 2.9 years, while the ground state (102Rh)has a half life of 207 days.
Each kilo of fission rhodium will contain 6.62 ng of 102Rh and 3.68 ng of 102mRh. As 102Rh decays by beta decay to either 102Ru (80%) (some positron emission will occur) or 102Pd (20%) (some gamma ray photons with about 500 keV are generated) and the excited state decays by beta decay (electron capture) to 102Ru (some gamma ray photons with about 1 MeV are generated). If the fission occurs in an instant then 13.3 grams of rhodium will contain 67.1 MBq (1.81 mCi) of 102Rh and 10.8 MBq (291 uCi) of 102mRh. As it is normal to allow used nuclear fuel to stand for about five years before reprocessing, much of this activity will decay away leaving 4.7 MBq of 102Rh and 5.0 MBq of 102mRh. If the rhodium metal was then left for 20 years after fission then the 13.3 grams of rhodium metal would contain 1.3 kBq of 102Rh and 500 kBq of 102mRh. At first glance the rhodium might be adding to the resource value of reprocessed fission waste, but the cost of the separation of the rhodium from the other metals needs to be considered.